

A-LEVEL Mathematics

MPC3 – Pure Core 3 Mark scheme

6360 June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment		
(a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = m(4x+1)^3 \cos 2x + n(4x+1)^2 \sin 2x$	c M1		$m,n \neq 0$		
	$m=2$ and $n=4\times 3[=12]$ isw	A1	2			
(b)	$\left[\frac{dy}{dx} = \right] \frac{(3x^2 + 4)4x - (2x^2 + 3)6x}{(3x^2 + 4)^2} \text{oe}$	M1	-	Or (2x ² +3)(-1)(3x ² +4) ⁻² 6x+(3x ² +4) ⁻¹ 4x		
	$=\frac{-2x}{(3x^2+4)^2}$	A1				
			2			
(c)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{1}{\frac{2x^2 + 3}{3x^2 + 4}} \times \text{their } b(i)$	M1		'their b(i)' must be in the correct form kx		
	PI			$\overline{(3x^2+4)^2}$		
	$\left[\frac{dy}{dx} = \frac{3x^2 + 4}{(2x^2 + 3)} \times \frac{-2x}{(3x^2 + 4)^2}\right] $ is w	A1				
	$\begin{bmatrix} ux \\ (2x + 3) \\ (3x + 4) \end{bmatrix}$			Or (using rules of logs) $\ln (2x^2 + 2) = \ln (2x^2 + 4)$		
	$\left(-2r \right)$			$y = \ln(2x + 3) - \ln(3x + 4)$ dy ax bx		
	$\left(=\frac{2x}{(2x^2+3)(3x^2+4)}\right)$			$\frac{\frac{dy}{dx} = \frac{dM}{2x^2 + 3} - \frac{dM}{3x^2 + 4}}{a > 0, b > 0}$ M1		
				a = 4, b = 6 A1		
			2			
Notes:	Allow recovery from poor use of brackets in e	ach part.	6	1		
dy a						
(a) If expanded, $\frac{dy}{dx} = (ax^2 + bx + c)\sin 2x + (dx^3 + ex^2 + fx + 1)2\cos 2x$ M1						
a = 192, b = 96, c = 12, d = 64, e = 48, f = 12 A1						
(b) For For A1,	(b) For M1, $\frac{dy}{dx} = \frac{\pm (3x^2 + 4)4x \pm (2x^2 + 3)6x}{(3x^2 + 4)^2}$ or $\pm (2x^2 + 3)(-1)(3x^2 + 4)^{-2}6x \pm (3x^2 + 4)^{-1}4x$ For A1, accept p= -2					

Q2		Solution	Mark	Total	Comment
а	$f(x) = x^x - x^x$	5 PI			(or reverse)
	f(2) = -1				
	f(3) = 22		M1		Both values correct
	Change of s	ign(or different signs)			
	$\Rightarrow 2 < \alpha <$: 3	AI		Must have both statement and interval
					in words or symbols
					OR comparing 2 sides:
					at 2, $2^2 < 5$;
					at 3, $3^3 > 5$ (M1)
				2	$\Rightarrow 2 < \alpha < 3 \tag{A1}$
_				_	
b	$(x^x = 5 \implies$	$ \ln x^x = \ln 5) $			
	$x\ln x = \ln 5$		M1		Taking logs and using rule of logs
	$\ln x = \frac{\ln 5}{2}$		A 1		Must see this line
	$X_{ln 5}$		AI		
	$x = e^{\frac{ms}{x}}$		A1		AG, all correct (including middle line)
				3	
с	$[x_2 =]2.236$		B1 B1		Longer and further values
	$[x_3 =]2.054$		DI	2	Ignore any further values
di				2	
	x	у			
	0.5	4.29289	B 1		All 7 correct <i>x</i> values (and no extras
	0.7	4.22094			used) PI by correct y values
	0.9	4.09047	B1		At least 5 correct y in exact form or
	1.1	3.88947			decimal values, rounded or truncated
	1.3	3.59354			to 3dp or better (in table or formula)
	1.5	3.16288			(PI by correct answer)
	1.7	2.53531			Correct use of Simpson's rule using
	$\frac{1}{2} \times 0.2[4.29]$	29+2.5353+4(4.2209	M1		1/3 and 0.2 or and their 7 v values (of
	3 13 8805 3	1620) + 2(4 0005 + 3 5035)]			which 5 are correct to 2dp), either
	+3.0093+3	$(1029) \pm 2(4.0903 \pm 5.5955)$			listed or totalled.
	= 4.49		A1		CAO
				4	
dii	6 - their (di)		M1		PI by correct answer
	= 1.51		AIF	2.	SC1 for - 1.51
		Total		13	
Notes:				·	
a cond	one $2 \le x \le 3$	3, allow 'x', 'root' for α , but not '	'it'		
di 4.49	θ with no wor $51 \sec 2/2$	King scores 0/4)		
WII 1	\sim 1 500105 $\angle 2$	1.51 with type 500105 0/2	-		

Q3	Solution	Mark	Total	Comment
	$x^{2}-5x+6[=0]$ [x =]2, 3 PI	B1		B1 can be earned for any correct 2 solutions
	$x^{2} + 5x - 6 = 0$ [x =] - 6, 1 PI	B1		
	$\begin{array}{l} x \le -6 \\ x \ge 3 \end{array}$	B1 B1		or $-6 \ge x$ $3 \le x$
	$1 \le x \le 2$	B1	5	And no extras seen
	Total		5	
Notes:			11	

Correct inequalities implies correct critical values if not seen explicitly

A candidate may use a quartic to find the critical values, but marks are only earned for correct solutions as above, eg solutions of 1, 2 scores **B1**

If strict inequalities are used **throughout** then penalise 1 mark – but if some correct answers and some strict inequalities then mark as scheme.

Q4	Solution	Mark	Total	Comment	
а	Stretch I				
	[Parallel to] x[-axis] II				
	(or line $y = 0$)	M1		I and II or III	
	[SF] 0.5 III	A1		I + II + III	
	then				
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	M1		or (2 nd) Stretch [parallel to] y[-axis]	
	[2.5]				
		A1		SF e^{-3}	
	OR			(for the '2 stretch' method, if the 'y'	
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	(M1)		only be earned if there is a second stretch in 'x' direction.	
	$\begin{bmatrix} 5\\0 \end{bmatrix}$	(A1)		The stretches can be in either order)	
	then				
	Stretch I				
	[Parallel to] x[-axis] II	(M1)		I and II or III	
	[SF] 0.5 III	(A1)	4	I + II + III	
b	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x-5}$	B1			
	Grad normal = $-\frac{1}{\text{their gradient}}$	B1F		Condone expression in terms of x	
	(equation normal)				
	e e				
	$y - e^{-1} = -\frac{1}{2}(x - 2)$ oe	B1		Must be exact values	
	(At A y = 0)				
	$r = 2 + \frac{2}{2}$ oe	2.44		Attempt to find at least one intercent	
	e^2	NI I		from 'their' normal subst $x = 0$ or	
	(At B x=0)			y = 0 in any straight line equation	
	$y = e + \frac{1}{e} = \frac{e^2 + 1}{e}$ oe	A1		Both <i>x</i> and <i>y</i> values correct	
	$\left((\text{Area}=) \ 0.5 \times \frac{(e^2+1)}{e} \times \frac{2(1+e^2)}{e^2} \right)$				
	$(e^2+1)^2$	A 1			
	$=\frac{\dot{a}}{e^3}$	AI			
			6		
	Total		10		
	I Otal		IU		
Notes: (a) translation (accept translate, transla), must be with a column vector to score M1 For '[parallel to] x [-axis]', DO NOT allow ' $x = 0$ '					

Q5	Solution	Mark	Total	Comment	
а	$[f'(x)] = 16 - 2e^{2x}$	B1			
	(f'(x) = 0)				
	$16-2e^{2x}=0$	M1		For equating their derivative to zero (must be of form $a + be^{2x}$)	
	$x = \frac{1}{2}\ln 8 \qquad \text{oe}$	A1		Allow AWRT 1.04	
	$[f(x) =]8 \ln 8 - 8$ oe	m1		Correct subst of their x into $f(x)$, Allow AWRT 8.63 or 8.64	
	$f(x) \le 8\ln 8 - 8 \qquad \text{oe}$	A1	5	Must have exact form and correct notation, no ISW	
b	$g(x) = \frac{1}{x}$ oe	M1			
	gg(x) = x	A1		NMS 2/2	
			2		
	Total		7		
Notes:					
(a) Allow equivalent exact forms for $8\ln 8 - 8$, but not decimal equivalent for final A mark					
. /	Must have simplified $e^{\ln 8}$				

Q6	Solution	Mark	Total	Comment
а	$u = \ln 3x$ $\frac{\mathrm{du}}{(\mathrm{dx})} = \frac{1}{x}$ oe	B1		PI by further work
	$\frac{\mathrm{d}v}{(\mathrm{d}x)} = \frac{1}{x^2} \qquad v = -x^{-1}$	B1		PI by further work
	$\int = -\frac{1}{x} \ln 3x - \int -x^{-1} \times \frac{1}{x} (dx) \qquad \text{oe}$	M1		Correct substitution of their terms into the parts formula
	$= -\frac{1}{x}\ln 3x - \frac{1}{x} (+c) \qquad \text{oe}$	A1	4	
b	$(V =)\pi \int_{\frac{1}{3}}^{1} (\frac{\ln 3x}{x})^2 dx$	B1		Must include π , (not 2π), limits and dx (each seen at some stage, in this part)
	$[u = (\ln 3x)^2] \qquad \frac{\mathrm{d}u}{(\mathrm{d}x)} = 2\ln 3x \times \frac{1}{x}$	M1 A1		$\frac{\mathrm{d}u}{(\mathrm{d}x)} = k \ln 3x \times \frac{1}{x}$ $k = 2$
	$\frac{\mathrm{d}v}{(\mathrm{d}x)} = x^{-2} \qquad v = -x^{-1}$			
	$\int (\frac{\ln 3x}{x})^2 dx = -\frac{1}{x} (\ln 3x)^2 - \int -x^{-1} \times 2\ln 3x \times \frac{1}{x} (dx)$	M1		Correct substitution of their terms into the parts formula
	$[= -\frac{1}{x}(\ln 3x)^2 + \int 2\frac{\ln 3x}{x^2} dx]$			
	$= -\frac{1}{x}(\ln 3x)^2 - \frac{2}{x}\ln 3x - \frac{2}{x}$	A1		
	= $[-(\ln 3)^2 - 2\ln 3 - 2] - [-3(\ln 1)^2 - 6\ln 1 - 6]$ (ln1 terms may be omitted)	M1		Correct subst into expression of the form $\frac{k}{(\ln 3x)^2} + \frac{l}{-\ln 3x} - \frac{m}{m}$
	$[V =] \pi (4 - (\ln 3)^2 - 2\ln 3)$	A1		x x x $xand F(1)-F(1/3)$

 			1
Total		11	
		7	First B1 and final 2 marks are as first method
$= -\frac{1}{x}(\ln 3x)^2 - \frac{2}{x}\ln 3x - \frac{2}{x}$	(A1)		
$\int = \ln 3x \left(-\frac{1}{x} \ln 3x - \frac{1}{x} \right) - \int \left(-\frac{1}{x} \ln 3x - \frac{1}{x} \right) \frac{1}{x} (dx)$	(M1)		Correct substitution of their terms into the parts formula
$\frac{\mathrm{d}u}{(\mathrm{d}x)} = \frac{1}{x} \text{oe} \qquad v = -\frac{1}{x}\ln 3x - \frac{1}{x}$	(A1)		
OR $u = \ln 3x$ $\frac{\mathrm{d}v}{(\mathrm{d}x)} = \frac{\ln 3x}{x^2}$	(M1)		'splitting' in this way

Notes

In both parts, the method mark for use of parts formula is earned for correct subst of **their** terms into the parts formula, with no restriction on **their** terms

(b) Condone $(\ln 3x)^2$ as $\ln^2 3x$, throughout

07	Colution	Mork	Total	Commont
(a)		Mark	Total	Comment
	$\left(\frac{dy}{dx}\right) = -1 \times (\cos x)^{-2} \times -\sin x$	M1		
	$=\frac{\sin x}{\cos^2 x}$ oe			
	$=\frac{\sin x}{\cos x} \times \frac{1}{\cos x}$ oe			Must see 'a middle line'
	$= \tan x \sec x$	A1		AG, all correct and no errors seen
			2	
(b)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2\sec^2 x - 3\sec x \tan x$	M1		$m \sec^2 x + n \sec x \tan x$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}=0\right)$			
	$[\sec x](2\sec x - 3\tan x)[=0] \qquad \text{oe}$	m1		$[\sec x](m\sec x + n\tan x)[=0]$
	$\sin x = \frac{2}{3}$	A1		Finding any correct exact trig ratio
	$\cos x = \frac{\sqrt{5}}{3}$ $\tan x = \frac{2}{\sqrt{5}}$ $\sec x = \frac{3}{\sqrt{5}}$	A1		Finding a second correct exact trig ratio
	$y = 2 \times \frac{2}{\sqrt{5}} - 3 \times \frac{3}{\sqrt{5}}$	M1		For subst their exact values correctly into 'y'
				(PI by correct final answer following previous 4 marks earned)
	$y = -\sqrt{5}$	A1 CSO		Must have used correct exact values
			6	If second M mark is not earned, then SC1 for AWRT –2.24 or $-\sqrt{5}$
	Total		8	
Notes: (a)	For M1 , condone 'dropping one minus s	ign' and/	or poor	use of brackets
Ca	ndidates must use chain rule to qualify for	M1. C	lear use	of quotient rule scores 0/2
(c) If	different approach then m1 only earned w	vhen <i>a</i> sin	hx = b	oe or $a \sec x = b$ oe is seen
Candidates could use trig identity to find tan x first, and then sec x				

For 'second value', any of the two trig ratios, but not just sec x and $\cos x$. If second M mark is not earned, then **SC1**, eg a candidate could score M1m1A1A0M0 SC1

Q8	Solution	Mark	Total	Comment
	$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}x} = 4$ oe	B1		Correct expression for $\frac{du}{dx}$ or du or dx
	[u = 4x - 1] oe $4x = u + 1$	B1		Correct term in kx , where $k = 1, 2, 4$
	$\int \frac{9-u}{2} \times \sqrt[3]{u} \times \frac{(\mathrm{d}u)}{4} \qquad \text{oe}$	M1		Replacing all terms in x to all in terms of u, including replacing dx , but condone omission of du
		A1		All correct, must see d <i>u</i> here or on next line
	$\left(=\frac{1}{8}\int 9u^{\frac{1}{3}}-u^{\frac{4}{3}}(\mathrm{d}u)\right)$ oe			
	$=\frac{1}{8}(\frac{3}{4}\times9u^{\frac{4}{3}}-\frac{3}{7}u^{\frac{7}{3}}) \text{oe}$	m1		Correct integration from an expression of the form $au^{\frac{1}{3}} + bu^{\frac{4}{3}}$ or $au^{\frac{1}{3}} + bu^{\frac{4}{3}} + cu^{\frac{1}{3}}$
	Limits $[x]_{0.25}^{0.5} = [u]_0^1$ may be seen earlier	B 1		Or, correctly changing variable back into <i>x</i>
	$\left(=\frac{1}{8}[(\frac{27}{4}-\frac{3}{7})-0]\right)$			
	$=\frac{177}{224}$ oe	A1		allow equivalent fraction
	Total		7	
Notes:	Candidates might not collect terms, but proceed	as follow	S	

$\int \frac{5-2(\frac{u+1}{4})}{4} \times \sqrt[3]{u} \times (\mathrm{d}u)$	M1 A1
$\left(=\int \frac{5}{4}u^{\frac{1}{3}} - \frac{u^{\frac{4}{3}} + u^{\frac{1}{3}}}{8}(\mathrm{d}u)\right)$	
$=\frac{15}{16}u^{\frac{4}{3}}-\frac{3u^{\frac{7}{3}}}{56}-\frac{3u^{\frac{4}{3}}}{32}$	m1 etc

Q9	Solution	Mark	Total	Comment
ai	$\left(\sec^2 x + \tan^2 x - 1 \right)$			
	$(\sec x - \tan x - 1)$			
	$(\sec x + \tan x)(\sec x - \tan x) = \sec^2 x - \tan^2 x$	M1		Or correct use of $\sec^2 x = 1 + \tan^2 x$
	$-5(\sec x + \tan x) = 1$			in a correct expression
	$\sec x + \tan x = -0.2$	A1		AG: no errors seen
			2	
ii	$2 \sec x = -5.2$ or $2 \tan x = 4.8$	M1		Correctly reducing to a linear equation in one trig function
	$\sec x = -2.6$	A1		PI by correct value for $\cos x$
	$\cos x = -\frac{5}{13} \qquad \text{oe}$	A1	3	$\frac{a}{b}$ where <i>a</i> , <i>b</i> are correct integers
b	sec $y = -2.6$			
	$[y =] [\pm]112.6^{\circ}$	B1		AWRT [±]112.6°
				PI by a correct final answer
		N1		
	$2x - 10 = [\pm]$ their y	MI		
	$x = -21.3^{\circ}, [-88.7^{\circ}],$	AI		And no other extras in interval
			3	(ignore answers outside intervar)
	Total		8	
Notes	:			•
ai Alt	ernative I,			
si	$n x = -\frac{12}{13}$ correctly using $\sin^2 x + \cos^2 x$	x = 1	M1	
$(\cos x)$	$=-\frac{5}{13}$ and/or $\tan x = \frac{12}{5}$)			
leadin	g to			
$\sec x$ -	$\tan x = -0.2$ A1		A	G: no errors seen, must see a middle line
Also, the candidate could earn the M1A1 for part (ii) here (but only if part (ii) attempted, but final A1 mark must appear in part (ii)				
ii Cor	rect answer with no working scores 3/3, If M	I0 scored	, SC2 fo	$r \cos x = \mp \frac{5}{13}$ or $\frac{5}{13}$
b fina	l answer must be to 1dp			
I If N	10 scored, then SC1 for -21.3			